فراخوان مقاله: زمین آمار پیشرفته در هیدرولوژیکی
روشهای زمین آمار معمولاً در علوم آب، زمین و محیط زیست برای کمی کردن تغییرات فضایی، تولید نقشه های درون یابی با عدم قطعیت کمی و بهینه سازی طرحهای نمونه برداری فضایی استفاده می شود. زمین آمار زمین-فضا جنبه های پویای فرایندهای محیطی را بررسی کرده و تغییرات پویا را از نظر همبستگی مشخص می کند. زمین آمار نیز می تواند با یادگیری ماشین و مدل های مکانیکی ترکیب شود تا مدل سازی فرایندها و الگوهای دنیای واقعی را بهبود بخشد. چنین روشهایی برای مدل سازی خواص خاک، تولید خروجی های مدل آب و هوایی، شبیه سازی فرآیندهای هیدرولوژیکی و درک بهتر و پیش بینی عدم قطعیت ها به طور کلی استفاده می شود. تجزیه و تحلیل داده های بزرگ و ادغام داده ها به دلیل پیشرفت های تکنولوژیکی و فراوانی منابع داده جدید از سنجش از دور و نزدیک و همچنین تعداد زیادی از شبکه های حسگر محیطی به موضوعات اصلی تحقیق تبدیل شده است. پیشرفتهای روش شناختی، مانند مدل سازی سلسله مراتبی بیزی، یادگیری ماشین، فرآیندهای پراکنده گوسی، مدلهای تعامل محلی و همچنین پیشرفت در ماژولهای نرم افزاری زمین آمار در R و پایتون، جعبه ابزار زمین آمار را افزایش داده است.