کد نویسی :: بیسین - سایت تخصصی مهندسی آب

آموزش نحوه ساخت منحنی حجم - ارتفاع دریاچه یا مخزن با پایتون


Python یک زبان برنامه نویسی است که قادر به انجام محاسبات برای مطالعات هیدرولوژیکی و ارزیابی منابع آب است. ما یک آموزش برای تعیین منحنی حجم و ارتفاع دریاچه پاتیلاس در پورتوریکو با پایتون و کتابخانه های عددی / مکانی به عنوان Numpy و Rasterio انجام داده ایم. سرانجام، نتایج به دست آمده از منحنی حجم و ارتفاع از یک منبع USGS مقایسه شد.

11 روش کلاسیک پیش بینی سری زمانی در پایتون - بخش دوم


از روش های یادگیری ماشین می توان برای طبقه بندی و پیش بینی مسائل سری زمانی استفاده کرد. قبل از کاوش در روشهای یادگیری ماشین برای سری های زمانی، بهتر است اطمینان حاصل کنید که آموزش روشهای پیش بینی سری زمانی خطی کلاسیک را به اتمام رسانده اید. روش های کلاسیک پیش بینی سری زمانی ممکن است بر روی روابط خطی متمرکز شده باشند، با این وجود، این روش ها پیچیده هستند و در طیف گسترده ای از مسائل عملکرد خوبی دارند، با این فرض که داده های شما به درستی آماده شده و روش به خوبی پیکربندی شده است.

پیش بینی سری زمانی در پایتون - قسمت 4


مدل های چند مرحله ای

هر دو مدل تک خروجی و چند خروجی در بخشهای قبلی، پیش بینی های مرحله یک زمانه را برای 1 ساعت در آینده انجام دادند.


این بخش به چگونگی گسترش این مدل ها برای پیش بینی گام های زمانی متعدد می پردازد.

پیش بینی با مدل های LSTM در کراس


حافظه طولانی کوتاه-مدت (به انگلیسی: Long short-term memory) یا به اختصار ال‌اس‌تی‌ام (تلفظ تحت‌اللفظی LSTM)، یک معماری شبکه عصبی بازگشتی (یک شبکه عصبی مصنوعی) است که در سال ۱۹۹۷ میلادی توسط سپ هوخرایتر و یورگن اشمیدهوبر ارائه شد، و بعداً در سال ۲۰۰۰ میلادی توسط فیلیکس ژرس بهبود داده شد.

فهرست آموزش - پیش بینی سری زمانی در پایتون


پایتون یک زبان برنامه نویسی ساده و قدرتمند است. از بکارگیری واژه ساده، منظورم این است که آن را بسیار منعطف تر از زبان هایی مانند C می یابید اگر چه کند است. و از واژه قدرتمند، منظورم این است که می توان بسیاری از کدهای موجود را که در C، C++، Fortran و غیره نوشته شده است، به آن چسباند. جامعه کاربر این زبان رو به رشد است که بسیاری از ابزار را به راحتی در دسترس می کند. شاخص  پایتون، که یک میزبان بزرگ از کد پایتون است، در حال حاضر دارای بیش از چند ده هزار بسته است، که در مورد محبوبیت آن صحبت می کنند. استفاده از پایتون در جامعه هیدرولوژی نسبت به سایر زمینه ها خیلی سریع نیست، اما امروزه بسیاری از بسته های هیدرولوژیکی جدید در حال توسعه هستند. پایتون دسترسی به ترکیب خوبی از ابزارهای GIS، ریاضیات، و آمار و غیره را فراهم می کند، که باعث می شود یک زبان مفید برای هیدرولوژیست باشد.

پیش بینی سری زمانی داده های آب و هوا در پایتون


در علوم مختلف، به یک توالی یا دنباله از متغیرهای تصادفی که در فاصله های زمانی ثابت نمونه برداری شده باشند، اصطلاحاً سری زمانی یا پیشامد تصادفی در مقطع زمان می‌گویند. به عبارت دیگر منظور از یک سری زمانی مجموعه‌ای از داده‌های آماری است که در فواصل زمانی مساوی و منظمی جمع‌آوری شده باشند. روش‌های آماری ای که این گونه داده‌های آماری را مورد استفاده قرار می‌دهد مدل های تحلیل سری‌ زمانی نامیده می‌شود. مانند فروش فصلی یک شرکت طی سه سال گذشته. یک سری زمانی مجموعهٔ مشاهدات تصادفی ای است که بر اساس زمان مرتب شده باشند. مثال‌های آن در اقتصاد و حتی رشته‌های مهندسی دیده می‌شود.

این کد نحوه انجام پیش بینی جدول زمانی را با استفاده از مدل LSTM نشان می دهد.

واسنجی مدل آب زیرزمینی با برنامه نویسی و یادگیری ماشین


یادگیری ماشین در آبهای زیرزمینی و مدل کالیبراسیون با MODFLOW ،Flopy ،PySal و Scikit Learn موضوع این پست است. کیفیت کار مدل سازی آب های زیرزمینی به سه عامل متکی است: توزیع مکانی-زمانی داده های مشاهده شده، ساخت و کالیبراسیون مدل و نتیجه گیری های حاصل از شبیه سازی های پیش بینی شده. بر اساس پیچیدگی های ابزارهای عددی، مقدار پارامترهای درگیر، کالیبراسیون آب های زیرزمینی می تواند یک چالش جدی برای مبتدیان، طراحان متوسط ​​یا پیشرفته با بسیاری از موفقیت ها و شکست ها باشد. نتیجه گیری اغلب با استرس روانی همراه است.

آیا مدل سازهای عددی بدون برنامه نویسی محدود هستند؟


یک سؤال بزرگ وقتی پیش آمد که در دوران مدرن یا در 5 سال گذشته با مدل سازی عددی سر و کار داشته باشیم، و این سؤال این است که مهارت های برنامه نویسی باید در یک هیدروژئولوژیست - مدل ساز عددی چقدر وجود داشته باشد؟ این سؤال بالاتر از این سؤال است: آیا یک متخصص هیدروژنولوژیست - باید به هر زبانی برنامه نویسی کد تولید کند؟

مدل سازی آب های زیرزمینی منطقه ای با MODFLOW و Model Muse


مدل سازی آب های زیرزمینی می تواند در مقیاس های زمانی و مکانی مختلف انجام شود ، از یک آزمایشگاه تا یک حوضه کامل ، از حالت پایدار تا هزاران سال. هر الزام مدل سازی دارای یک تفسیر خاص و تنظیم شرایط مرزی است. این آموزش در مورد نمونه ای از مدل سازی آب های زیرزمینی منطقه ای در حوضه آند در شرایط پایدار است ، این آموزش کل مجموعه مراحل مدل سازی را به عنوان تولید شبکه و واردات ارتفاع و همچنین شبیه سازی مدل و ارزیابی نتیجه را در بر می گیرد. مدل سازی عددی در نرم افزار منبع باز به عنوان MODFLOW با Model Muse انجام شد که هر دو توسط USGS تهیه شده اند.


درباره بهترين هاي بيسيـــن بدانيد...

Bird

يکي از مهمترين اهداف اين سايت تهيه آموزش هاي روان از ابزارهاي کاربردي علوم آب است.

اهميت مطالعات محيطي با ابزارهاي نوين در چيست؟

امروز با فارغ التحصيلي جمع کثير دانشجويان سالهاي گذشته و حال، با گذر از کمي گرايي ديگر صرف وجود مدارک دانشگاهي حرف اول را در بازار کار نمي زند؛ بلکه سنجش ديگري ملاک؛ و شايسته سالاري به ناچار! باب خواهد شد. يکي از مهم ترين لوازم توسعه علمي در هر کشور و ارائه موضوعات ابتکاري، بهره گيري از ابزار نوين است، بيسين با همکاري مخاطبان مي تواند در حيطه علوم آب به معرفي اين مهم بپردازد.

جستجو در بيسين


بیسین - سایت تخصصی مهندسی آب

سایت مهندسی آب بیسین با معرفی مهم ترین و کاربردی ترین نرم افزارها و مدل های شبیه سازی در حیطه مهندسی آب، تلاش به تهیه خدمات یکپارچه و محلی از محاسبات هیدرولوژیکی و هیدرولیکی می کند

W3Schools


اطلاعات سايت

  • behzadsarhadi@gmail.com
  • بهزاد سرهادي
  • شناسه تلگرام: SubBasin
  • شماره واتساپ: 09190622992-098
  • شماره تماس: 09190622992-098

W3Schools